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One-dimensional flow of polymer solutions in a plane channel under the action of the pressure gradient has
been considered. To describe the rheological properties of the solutions we have selected: 1) generalization of
the Jeffreys phenomenological model with an objective time derivative Fabc with six arbitrary material con-
stants; 2) the differential vector model proposed by Remmelgas, Harrison, and Leal and that is the approxi-
mation of the Doi–Edwards–Marrucci–Grizzuti model. Exact analytical solutions of the problem of flow in a
plane channel have been obtained for them. In the two cases the problem can have both a unique solution
and a nonunique solution. The velocity profiles are either smooth nearly parabolic or have weak tangential
discontinuities. Criterial conditions for the appearance of ambiguous flow regimes have been obtained.

Despite lengthy investigations, problems of modeling and stability of viscoelastic-liquid flows remain topical
in the rheology and technology of processing of polymer materials. Study of the reasons for the appearance of the so-
called spurt effects, i.e., disturbances in the stability of liquid flow out of capillaries and channels, has attracted the
particular attention of researchers [1–5]. Mathematical modeling of them involves investigation of the existence,
uniqueness, and stability of solutions to the equations of motion of viscoelastic liquids.

Numerous rheological models exist at present which allow for elasticity effects in the case of flow of polymer
solutions and melts. This work seeks to investigate the effectiveness of two models obtained by different methods with
the example of plane-parallel channel flow under the action of a prescribed gradient rather than to describe the behav-
ior of a certain specific material.

Consideration has been primarily given to the Jeffreys phenomenological model of a viscoelastic liquid with
an objective time derivative Fabc with arbitrary material constants a, b, and c (model A). This version of a rheological
model is a particular case of the Oldroyd eight-constant model in which the time derivatives for extra stresses and de-
formation rate contain identical material constants. At the same time, the models of Maxwell, De Witt, and White and
Metzner and the three- and four-constant models of Oldroyd can be considered as particular cases of the generalized
six-constant model of Jeffreys.

The second of the selected models has been obtained on the basis of statistical description of the orientation
and elongation of coiled macromolecules with subsequent averaging to a macrolevel. This model is based on the rep-
tile concept introduced by De Gennes and elaborated further by Doi and Edwards. In the Doi–Edwards (DE) model,
each polymeric molecule was considered as a flexible nonelongating chain moving in the tube formed by other mole-
cules [6]. In more recent times, owing to the investigations of Pearson, Leal, Marrucci and Grizzuti, the Doi–Edwards
model was modified to allow for the orientation and elongation of each segment of a polymer chain [7]. The resulting
DEMG model most adequately describes the dynamics of macromolecules but it is very cumbersome for numerical
calculations of actual flows. To approximate the DEMG model Remmelgas, Harrison, and Leal have developed the dif-
ferential vector model (RHL) with the nonlinear parameter of elasticity of a coiled macromolecule for description of
the effect of internal cross-links [8, 9]. It has been assumed that the orientational relaxation time τd is much longer
than the relaxation time of elongation τR. Owing to such an assumption, one can consider the orientation and the elon-
gation of a chain separately by introducing the vector R = Ru. In our work, we consider a simplified variant of the
RHL model with a linear elasticity parameter (model B).
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The present investigation seeks to compare the analytical solutions of the equations of motion for the two se-
lected models under the assumption of the one-dimensional flow in a plane channel and to separate kinematically fea-
sible and physically realizable ones out of them on the basis of the existing results of stability theory.

1. Formulation of the Boundary-Value Problem. Let us consider the formulation of the problem of viscoe-
lastic-liquid flow in a plane channel under the action of the pressure gradient. The equation of motion in terms of
extra stresses has the form

ρ 




∂v
∂t

 + v⋅∇ v



 = − ∇ p + ∇ ⋅τ .

The liquid will be considered to be incompressible:

∇⋅ v = 0 .

The equations of motion must be supplemented with governing relations and corresponding boundary condi-
tions.

Model A. The Jeffreys equation with the most general associated time derivative which preserves symmetry
has the form τ + λ1Fabcτ = µ(D + λ2FabcD) or in expanded form it is

τ + λ1 




Dτ
Dt

 − W⋅τ + τ⋅W + a (ττ⋅D + D⋅ττ) + b (τ:D) I + cD tr (ττ)

 =

= 2µ 

D + λ2 



DD
Dt

 − W⋅D + D⋅W + 2a (D⋅D) + b (D:D) I




 .

Model B. The governing equation for the polymer solution is written with account for the representation of
the vector R = Ru:

τ = 2ηsD + 
ηpo

τd
 sR

2
t suut ,

D suut
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T
 − 2∇ v:suut suut − 

1

τd sR
2
t

 

suut − 

1

3
 I

 ,

D sR
2
t

Dt
 = 2 sR

2
t ∇ v:suut − 

1
τR

 (sR
2
t − 1) .

2. Analytical Solution for Model A. In Cartesian coordinates, the one-dimensional (vx(y) and vy = vz = 0)
steady-state flow in a long plane channel is described by the equation

∂τxx

∂x
 + 
∂τxy

∂y
 = 

∂p

∂x
 . (1)

When the viscosity coefficient µ is constant, all the components of the extra-stress tensor are independent of x while
all the derivatives with respect to x except dp/dx = const are equal to zero, and Eq. (1) can be integrated once. Taking
account of the fact that τxy = 0 at y = 0, we obtain

τxy = 
dp
dx

 y . (2)

The components of the extra-stress tensor in plane-parallel flow are determined by the following expressions:
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τxx + τxyλ1 




dvx

dy



 (− 1 + a + b) = µλ2 





dvx
dy





2

 (− 1 + a + b) , (3)

τyy + τxyλ1 




dvx

dy



 (1 + a + b) = µλ2 





dvx

dy




2

 (1 + a + b) , (4)

τzz + τxyλ1 




dvx

dy



 b = µλ2 





dvx

dy




2

 b , (5)

τxy + 
1

2
 λ1 





dvx
dy




 [(τxx − τyy) + (τxx + τyy) (a + c)] = µ 





dvx

dy



 . (6)

Substituting (3)–(5) into (6) and then into (2), we find

τxy = µ 




dvx

dy



 

1 + λ1λ2 [1 − (a + b) (a + c)] 




dvx

dy




2

1 + λ1
2
 [1 − (a + b) (a + c)] 





dvx

dy




2
 = 

dp

dx
 y . (7)

For the flow with a prescribed gradient we must determine the rate of shear and the velocity profile from the solution
of the equation of motion (7). We will assume that (a + b)(a + c) ≠ 1. Otherwise we obtain a trivial solution with a
parabolic velocity profile.

After the introduction of the dimensionless parameters ξ = y/h, ε = λ2
 ⁄ λ1, and α = √ 1 + (a + b)(a + c)  and

the dimensionless longitudinal velocity V = vxλ1α ⁄ h, rate of shear q = λ1αdvx
 ⁄ dy, and pressure gradient G =

−2∆pλ1αh ⁄ µL, we have

2q 
1 + εq2

1 + q
2

 = − Gξ . (8)

For the prescribed pressure gradient, Eq. (8) describes the distribution of the dimensionless rate of shear as a function
of the dimensionless coordinate ξ. It is nonlinear and can have several solutions for q.

To compute the velocity profile we must take the following integral:

V = ∫ qdξ + C = ∫ q 
dξ
dq

 dq + C . (9)

We can compute the derivative 
dξ
dq

 = −2

G
 
(1 − q2 + 3εq2 + εq4)

(1 + q2)2
 from (8) and, using (9), find the longitudinal velocity

as a function of the rate of shear:

V = 

ε (1 + q

2) + (ε − 1) 

ln  1 + q

2  + 
2

1 + q
2



 + C


 
1

G
 . (10)

The integration constant C is determined from the boundary conditions V = 0 and q = qw at ξ = %1:

C = − ε (1 + qw
2 ) − (ε − 1) 


ln  1 + qw

2   + 
2

1 + qw
2



 .
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On the other hand, the transverse coordinate ξ can also be written from Eq. (8) as a function of q:

ξ = − 
2q (1 + εq2)

1 + q
2  

1

G
 . (11)

Finally, the profile of the longitudinal velocity can be represented in parametric form:

V = 

(1 + qw
2 ) 







ε (qw

2
 − q

2) + (1 − ε) 






ln 







1 + q
2

1 + qw
2







 + 

2 (qw
2

 − q
2)

(1 + q
2) (1 + qw

2 )















2qw (1 + εqw
2 )

 ,   ξ = 
q (1 + εq2) (1 + qw

2 )

qw (1 + q
2) (1 + εqw

2 )
 , (12)

where the rate of shear on the wall qw is related to the pressure gradient G by the relation

2qw 
1 + εqw

2

1 + qw
2  = − G . (13)

The prescribed value of the pressure gradient G, when ε < 1 ⁄ 9, can correspond to one, two, or three values of the rate
of shear on the wall qw.

Let us consider by way of example the dimensionless pressure gradient G as a function of the parameter qw
plotted according to Eq. (13) at ε = 0.05 (Fig. 1). Flow is physically unrealizable on the descending portion of the
G–qw curve between points K and P and on the ascending portion between points P and N. Thus, motions correspond-
ing to the ascending portions of the G–qw curve from 0 to point K and from point N and higher can be observed in
nature. In Fig. 1, the portions of the curve that correspond to physically feasible linearly stable regimes are shown
solid, while the portions of the curve that correspond to unrealizable regimes are shown dashed.

We will assume that flow occurs in the regime of a prescribed pressure gradient G. As it smoothly increases,
we have subcritical bifurcation, i.e., nonuniqueness of the solution appears before the critical value of the pressure gra-
dient Gmax is attained. Since branching subcritical solutions are unstable at infinitely small disturbance amplitudes, one
cannot observe continuous bifurcation in nature. Instead, we have a discontinuous process in which the disturbed solu-
tion, leaving the domain of attraction of the solution corresponding to the main flow, will pass through the unstable
branching solution to a stable solution with a much-higher-than-average velocity. The velocity profiles of the polymer
solution for this new linearly stable regime necessarily have closed loops, which leads to weak tangential discontinui-
ties (the function is continuous, the jump is in the derivative) or strong tangential discontinuities (the jump is in the
function itself). The latter are unstable to infinitely small disturbances now. Therefore, only weak tangential disconti-
nuities can be realized, which correspond to the passage along the line MN

____
 arranged so that the areas of the domains

S1 and S2 (see Fig. 1) are equal. Figure 2 gives the velocity profiles in the case of a jump from point K to point L;

Fig. 1. Dimensionless pressure drop G vs. dimensionless rate of shear on the
channel wall qw for ε = 0.05.
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they have been constructed according to formulas (12) at the same pressure gradient Gmax, which is critical for this
ε. The dashed line denotes the unrealizable loops corresponding to the passage along the MN

____
 line.

As the pressure gradient smoothly decreases, reverse passage to the left-hand branch of the curve is along the
MN
____

 line (Fig. 1) at Geq < Gmax. At this value of G, the branch point of the second solution turns out to be at the
channel boundary, while inside the channel the velocities are totally coincident with the first solution. Thus, there is
no variation of the velocity in the case of a smooth decrease in the pressure gradient.

From the velocity profile found we can compute the dimensionless flow rate Q of the polymer solution mov-
ing in the channel by integrating the velocity profile over the channel depth. For the values ε ≥ 1 ⁄ 9 the integrand is
smooth and a certain integral is taken over the entire depth of the channel:

Q = 2 ∫ 
0

1

Vdξ = 2 ∫ 
0

qw

V 
dξ
dq

 dq . (14)

For ε < 1/9, in active loading dG > 0 and G > Gmax and in unloading dG < 0 and G > Gef, the integrand has a
closed loop with a branch point inside the channel, and to compute the flow rate we must subdivide the evaluated in-
tegral into the sum of two integrals with the limits from 0 to qM and from qN to qw in which the integrand is mono-
tonic:

Fig. 2. Velocity profiles for G = Gmax = 1.0559 and ε = 0.05: 1) velocity at
point K and 2) at point L.

Fig. 3. Hysteresis of the head-flow-rate characteristics for ε = 0.05.

Fig. 4. Phase plane G–ε [1) Gmax; 2) Geq]: I, stability domain (the solution is
unique, the velocity profile is smooth and nearly parabolic); II, metastability
domain (two solutions stable to infinitely small disturbances and unstable in re-
lation to disturbances of finite amplitude); III, stability domain (the solution is
unique, the velocity profile has weak tangential discontinuities).
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Q = 2 ∫ 
0

ξ
∗

Vdξ + 2 ∫ 
ξ
∗

1

Vdξ = 2 ∫ 
0

qM

V 
dξ
dq

 dq + 2 ∫ 
qN

qw

V 
dξ
dq

 dq . (15)

One can also determine the dependence of the flow rate on the dimensionless pressure gradient in parametric
form by adding relation (13) to Eq. (14) or (15).

From the fact that, as G increases and drops, passages from one branch of the curve to the other occur at
different critical values of G, the head-flow-rate characteristic has a hysteresis (Fig. 3). The arrows in the figure indi-
cate the direction followed by the process with increase or decrease in the pressure gradient.

For the values ε < 1 ⁄ 9 there is a certain interval Geq–Gmax in which the main motion is metastable, i.e., stable
in relation to infinitely small disturbances and unstable in relation to disturbances of finite amplitude. Critical for this
type of flow is the empirical condition Gmax = 1 + 0.2376ε. In particular, for the De Witt model this is Gmax = 1. In
the subcritical regime Gmax ≤ 1, the velocity profiles are continuously smooth and nearly parabolic. In the supercritical
regime Gmax > 1 and at (a + b)(a + c) < 1, the velocity profiles have weak tangential discontinuities in the general case,
while for Maxwell-type models (λ2 = 0) there exist no kinematically feasible solutions of any sort.

In the phase plane G–ε (Fig. 4), we can separate the domain where the problem has a unique stable solution
(domain I) and the domain of metastable stability — the solution is stable in relation to infinitely small disturbances
and unstable in relation to disturbances of finite amplitude (domain II). Here one linearly stable solution is realized de-
pending on the loading prehistory. A unique stable solution with weak tangential discontinuities is realized in domain
III.

3. Analytical Solution for Model B. In the case of the stationary plane-parallel flow (vx = vx(y), vy = 0, and
vz = 0) for the five unknowns vx, u = suutxy, v = suutxx, w = suutyy, and r = sR2

t we have five differential equa-
tions

1
1 + k

 
d

dξ
 


dV
dξ




 + 

k
1 + k

 
d (ur)

dξ
 = − G ,

(16)




u

2
 − 

w
2



 
dV
dξ

 + 
u
r

 = 0 ,
(17)

(v − 1) u 
dV
dξ

 + 
v − 

1
3

r
 = 0 , (18)

uw 
dV
dξ

 + 
w − 

1
3

r
 = 0 , (19)

ur 
dV
dξ

 − 
r − 1
ε

 = 0 ,
(20)

where ξ = y/h, k = ηpo
 ⁄ ηs, V = vxτd

 ⁄ h, ε = τR
 ⁄ τd, G = −∆pτdh ⁄ Lη0, and η0 = ηs + ηpo, and the boundary conditions

of sticking for the velocity: V = 0 at ξ = %1.
Equation (16) can be integrated once. Introducing the dimensionless rate of shear q = τddvx

 ⁄ dy, with allow-
ance for the fact that q = 0 and u = 0 at ξ = 0, we obtain

q
1 + k

 + 
kur

1 + k
 = − Gξ .

(21)
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We introduce the parameter F = (r − 1)/ε and solve system (17)–(21) relative to the parameter F. From solu-
tion of the system of equations (18) and (20) we have

u = 
F
qr

 ,
(22)

v = 
3F + 1

3 (F + 1)
(23)

and from the system of equations (17) and (19), with account for (22) and (23), we obtain

r = 
√ 6  √F  (F + 1)

q
 ,

(24)

w = 
1

3 (F + 1)
 .

(25)

The rate of shear q can also be expressed from (24) by the parameter F:

q = 
√ 6  √F  (1 + F)

1 + εF
 .

(26)

To find the velocity profile we must take the following integral:

V = ∫ dqξ + C = ∫ q 
dξ
dF

 dF + C .
(27)

Then we can compute the derivative dξ/dF from (21) and, taking the integral in (27), express the longitudinal velocity
V and the dimensionless coordinate ξ by the parameter F:

V = 
1

G (1 + k)
 









k ln 





1 + F

(1 + εF)1
 ⁄ ε



 + 

kF

2
 + 

3F

ε2  + 
3 (ε2

 − 4ε + 3)

ε3
 (1 + εF)

 − 
3

ε3 
(ε2

 − 2ε + 1)

(1 + εF)2










 + C ,

Fig. 5. Dimensionless pressure drop vs. parameter Fw for k = 1000: 1) ε = 0,
2) 0.01; 3) 0.05, and 4) 0.1.

Fig. 6. Two velocity profiles existing at the same critical pressure drop Gmax
= 0.22176, k = 1000, and ε = 0.05: 1) subcritical regime; 2) supercritical re-
gime.
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ξ = − 
1
G

 
√ 6  √F
(1 + k)

 




k (1 + εF)2 + 6 (1 + F)2

6 (1 + F) (1 + εF)




 .

(28)

The integration constant C is determined from the boundary condition V = 0 and F = Fw at ξ = %1.
The dimensionless pressure gradient G and the parameter Fw are related by the expression

√6  √Fw

(1 + k)
 




k (1 + εFw)
2
 + 6 (1 + Fw)

2

6 (1 + Fw) (1 + εFw)




 = − G .

(29)

Figure 5 gives the dimensionless pressure gradients G as functions of the parameter Fw at k = 1000 for dif-
ferent ε.

At the prescribed pressure gradient G and when ε < 1 ⁄ 9, there can exist one, two, or three values of the pa-
rameter Fw. The velocity profiles for two solutions existing at the same pressure gradient G = Gmax are given in Fig.
6. It is obvious that models A and B yield analogous dependences of the dimensionless pressure gradient on the cor-
responding parameters and similar profiles of longitudinal velocities. Therefore, all the arguments concerning the exist-
ence and stability of solutions and given in Sec. 2 are also true of the solutions obtained for model B. However,
model B provides additional information on the distribution of the microstructure configuration.

Let us consider, by way of example, the profiles of the elongation r and the distributions of the components
of the orientational tensor u, v, and w over the channel height at G = Gmax = 0.22176, k = 100, and ε = 0.05 in sub-
critical and supercritical regimes. In the first regime, the elongation r  smoothly increases from the axis to the channel
wall and the statistical-mean orientation also smoothly changes from the isotropic state on the axis to the predominant

Fig. 7. Profiles of the elongation [1) r = sR2
t] and of the orientation-tensor

components [2) v = suutxx, 3) w = suutyy, 4) u = suutxy]: a) subcritical re-
gime; b) supercritical regime.

Fig. 8. Regions of the critical values of the pressure gradient for different k: I)
k = 400, II) 500, III) 1000, and IV) 10,000.
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orientation along the flow (Fig. 7a). In the second regime, these parameters, smoothly changing almost throughout the
interior of the channel, experience a jump near the wall (Fig. 7b).

In model B, just as in model A, critical regimes can occur only when ε < 1 ⁄ 9. This is a necessary but not
sufficient condition for model B. For each prescribed value of 0 < ε < 1 ⁄ 9 and k there is a limit value of the pressure
gradient (Gmax) the excess over which leads to nonuniqueness of the solution and to tangential discontinuities in the
velocity profiles and in the distributions of the elongation and the components of the orientation tensor. For prescribed
k and ε the critical values of the pressure gradient are determined from the condition dG/dF = 0 and they can be rep-
resented in the form of the system relative to Gmax and F:

 Gmax = 
√ 6  √F
(1 + k)

 




k (1 + εF)2 + 6 (1 + F)2

6 (1 + F) (1 + εF)




 ,   k = − 6 

(1 + F)2 [εF (F − 1) + 3F − 1]

(1 + εF)2 [εF (F + 3) − F + 1]
 .

(30)

The solution of system (30) is presented graphically in Fig. 8.
For each of the prescribed values of the parameter k the regions lying lower and more to the right of the cor-

responding curves belong to the subcritical values of the dimensionless pressure gradient, the regions lying higher and
more to the left belong to the supercritical regimes in which the problem has a nonunique solution, and the profiles
of the velocity, the elongation, and the orientation-tensor components have tangential discontinuities.

This work was carried out with support form the Russian Foundation for Basic Research, project code 01-01-
96485.

NOTATION

I, unit tensor; ⋅, scalar product; :, double scalar product; tr(⋅), trace of the tensor; s⋅t, statistical averaging; x,
y, z, Cartesian coordinates, m; ∇ , Hamiltonian, m−1; 2h, channel depth, m; ρ, density, kg/m3; v, velocity vector, m/sec;
p, pressure, Pa; τ, extra-stress tensor, Pa; ∇ v = D + W, velocity gradient, sec−1; D = (∇ vT + ∇ v)/2, symmetric part of
∇ v, deformation-rate tensor, sec−1; W = (∇ vT + ∇ v)/2, antisymmetric part of ∇ v, vorticity tensor, sec−1; µ, coefficient
of viscosity, Pa⋅sec; λ1 and λ2, times of relaxation and retardation, sec; Fabc, objective time derivative, sec−1; a, b, and
c, dimensionless material constants; D/Dt, substantial time derivative, sec−1; C, integration constant; k = ηpo

 ⁄ ηs, di-
mensionless parameter of concentration; ηpo, polymer viscosity, Pa⋅sec; ηs, solvent viscosity, Pa⋅sec; τd, orientational
relaxation time, sec; τR, relaxation time of elongation (according to Rouse), sec; R, dimensionless vector describing the
elongation and orientation of the chain; R, equilibrium-length-scaled dimensionless distance between the ends of the
chain; u, unit vector in the direction of elongation of the chain; Gmax, dimensionless critical pressure gradient; Geq,
dimensionless equivalent pressure gradient; Q, dimensionless flow rate of the polymer. Superscripts: T, transposition of
the tensor; ∗ , value of the quantity at the branch point. Subscripts: x, y, z, Cartesian components of the vector; xx, yy,
zz, and xy, Cartesian components of the tensor; d, orientational relaxation time (disengagement); w, wall; max, maxi-
mum value; eq, equivalent value; s, solvent; po, polymer.
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